top of page

Search results

74 items found for ""

  • VINCENT Symposium 2019 | Vincent Systems

    VINCENT Symposium 2019 Close

  • Declarations of conformity - MDR | Vincent Systems

    MDR (Medical Device Regulation) Declarations of conformity according to MDR Since May 26, 2021, the new EU Medical Device Regulation (MDR) (EU 2017/745) is mandatory for medical device manufacturers. This replaces the Medical Device Directive (MDD) (93/42/EEC) which was valid until then. All declarations of conformity of our medical devices have been updated by the introduction of the MDR, according to its requirements. The declarations of conformity are available to you, as our certified customer, for download in the customer online portal. EUDAMED EUDAMED is the European database for medical devices. It serves the central administration of medical devices in the EU and is based on a resolution of the EU Commission (2010/227/EU) from the year 2010. Through the MDR (Medical Device Regulation (EU 2017/745)), we as manufacturers are obligated to provide informations about us and our products in the database. In EUDAMED we are registered under the following Single Registration Number (SRN): DE-MF-000016437

  • Jobs | Vincent Systems

    Jobs As an innovative company, we are always looking for creative minds and talents. Whether you are a student, graduate or experienced specialist - we offer promising entry opportunities and interesting fields of activity. Flat hierarchies with an “informal first name” culture, exciting fields of application and an interdisciplinary team await you at Vincent Systems. Are you looking for a meaningful activity where you can completely identify? Then apply unsolicited or for one of our advertised roles: Current job postings: Assistenz der Geschäftsführung (m/w/d) Office Manager (m/w/d) mit Buchhaltungsaufgaben IT-Administrator (m/w/d) Orthopädietechniker (m/w/d) Mitarbeiter (m/w/d) Service und Versand Techniker (m/w/d) Medizintechnik Kundensupport (m/w/d) Wirtschaftsjurist (m/w/d) Internships / Theses Are you a student* at a German university and want to gain practical experience in the field of prosthetics? We would be happy to assist you with your final thesis or an internship. Send us an unsolicited application or apply (4-6 months in advance) for one of our advertised internship positions: Unsolicited applications Please always submit your complete application documents (cover letter, resume, references), stating your salary requirements and an earliest possible starting date, exclusively by e-mail, to Ms. Panait at bewerbung@vincentsystems.de We do not accept postal or personal applications - we ask for your understanding.

  • Fluidhand2 | Vincent Systems

    1999 - Fluidhand 2 Up The new planar technology for manufacturing fluidic drives and kinematics was therefore ideally suited for actively moving miniature catheters and endoscopes. However, the forces achievable with planar film drives, which operate at a working pressure of 0.5-1 bar, were too low for the construction of an artificial hand. To generate higher grasping forces, a correspondingly higher working pressure had to act in the fluidic drives. For Fluidhand 2, “artificial muscles” based on thin silicone hoses were therefore used, which were sheathed with a flexurally flexible, stretch-resistant fabric made of polyamide. The tubes of the Fluidhand 2 were unfolded in the finger joints. When subjected to an overpressure of up to 4 bar, the joints expanded unilaterally and realized a curvature in the opposite joint direction. Each finger of the hand has two pneumatic muscles, the thumb has three, the wrist has four. The extension is done by a rubber band. The joint and support structure in the fingers, thumb and hand, was made of fiber-reinforced composite material. The artificial hand scored with its consistently soft and compliant structure, very fast movements and pronounced adaptability when grasping. The grasping forces achieved were around 2.5 N per finger. Objects heavier than 500 g could not yet be grasped with this hand. As in Fluidhand 1, the hand was driven by compressed air, which meant that a powerful compressor was required to operate the hand. Up

  • VINCENTevolution4 | Vincent Systems

    VINCENTevolution4 World leader at all levels WATERPROOF The world's first waterproof hand prosthesis according to IP68 (protection against prolonged submersion) EXTREMELY LIGHT The world's lightest multi-articular hand prosthesis EXTREMELY ROBUST The world's only prosthetic hand with a complete skeleton made of aluminum or titanium SENSE OF TOUCH The world's first and so far only hand prosthesis with sense of touch EASY OPERATION The world's most intuitive hand prosthesis, in which all grasp types are controlled by muscle signals PRECISION Precise powerful pinch grip enables the gripping of objects as small as ⌀1 mm CUSTOMIZABLE The world's only hand prosthesis in 5 sizes and 25 colour combinations Precision and quality The fourth generation of our hand prostheses, VINCENTevolution4, builds on the successful drive concept of VINCENTevolution3, with further improvements in gripping force and speed. The precision of the grips, the aesthetics and the quality of the hand are outstanding. Sophisticated control system A unique feature is the patented single-trigger control system, which allows all grip types to be controlled uniquely and reliably with fine sensitivity via the muscles alone. The hand does not need buttons on the back of the hand, motion controls or a smart device to select a function or grip. These types of control often take too long in practice, so the desired grips will be performe d more quickly by the natural hand. In contrast, all movements and handle changes of the VINCENTevolution4 are controlled exclusively and directly by the muscles of the prosthesis wearer and are therefore completely independent of the opposing natural hand or second prosthesis. The absence of buttons and the simplicity of the control system allow the user to safely control the prosthesis from any movement and in any situation and to achieve any grip change quickly and without errors. The prosthesis can thus optimally assist the opposite hand and thus contribute its full potential to everyday life. Uncompromisingly waterproof We have been able to implement many innovations with the new generation of hands. For example, the VINCENTevolution4 is the world's first hand prosthesis to achieve the IP68 degree of protection, which means it is uncompromisingly waterproof against continuous submersion up to a maximum of 1.5 meters for a maximum of 30 minutes, with no restrictions on the salt or chlorine content or the quality of the water. Elastic fingers The gel encapsulated fingers run more smoothly and the flexible mounting of the finger base joints allows the fingers to be squeezed together naturally when the hand is slightly spread. This not only makes the hand feel more natural, but the flexibility of the fingers also makes them much more robust and resistant to all kinds of stress. Adaptive shell For the first time, the shell of the metacarpus consists almost entirely of an elastic, high-strength material. The soft surface and its excellent adaptive properties significantly improve both the feel and the grip. In particular, the soft knuckles relieve the hand during support and extend the service life of the optionally available lifelike textile-based cosmetic gloves. A special innovation is also the completely dust-tight covering of the finger and thumb base joints. All openings of the hand have been closed by space-saving visor-like joint solutions. The optimized finger and thumb tips have been given finger nails and flattenings that enable even more precise gripping. The index finger is touch-screen compatible in the proven manner. Control with up to four muscles For the first time, a hand prosthesis has an integrated four-channel control system that allows up to four EMG sensors to be connected directly to the hand. The user can choose between two control variants: the single-signal control, in which all grips can be reached without problems and errors with only one switching signal, or the multi-channel control, in which several switching signals can be used to directly control the different grips. Controlling a bionic hand prosthesis has never been so easy and safe. Sensitive sense of touch A vibrotactile sense of touch has been integrated as standard in all VINCENT hand prostheses since VINCENTevolution1. The patented feedback of touch and gripping force provides the user with tactile information about finger strength through gentle coded vibrations of the hand, which are transmitted to the prosthesis shaft, and thus a feeling for the artificial hand. Gripping even fragile objects or sensitive control of the gripping force even without a direct eye contact to the object expand the options for the user. The extended hand feedback also stimulates the user's sensorimotor cortex, which can help reduce phantom limb pain. Tastes are different Five different basic colors give the VINCENTevolution4 an individual and unique design. The colors black, white, pearl white, transparent and natural are each available in combination with four different metal colors and titanium. 25 color combinations can be put together. A color change of the colored silicone parts is possible at any time. Less is more The smallest version of the VINCENTevolution4 XS weighs only approx. 390 g, making it not only the smallest and most stable multi-articulating hand prosthesis with 6 motors currently available, it is also by far the lightest. Flyer VINCENTevolution4 Flyer VINCENTwrist Photo gallery Grasps VINCENTevolution4 Technical specifications Size and weight chart Textile Gloves & Accessories 1 black-black 2 black-titan 3 black-blue 4 black-gold 5 black-copper 6 white-black 7 white-titan 8 white-blue 9 white-gold 10 white-copper 11 pearl white-black 12 pearl white-titan 13 pearl white-blue 14 pearl white-gold 15 pearl white-copper 16 transparent-black 17 transparent-titan 18 transparent-blue 19 transparent-gold 20 transparent-copper 21 natural-black 22 natural-titan 23 natural-blue 24 natural-gold 25 natural-copper

  • Press & Downloads | Vincent Systems

    Press & Downloads Press material Downloads

  • Gloves | Vincent Systems

    Textile gloves & Accessories - GF glove factory GmbH GF. COSMETIC GLOVE - Cosmetic gloves GF. COLOR GLOVE - Unicolor gloves GF. THERMO SLEEVE - Textile sleeve for the prosthetic socket GF. WORK GLOVE - Work gloves GF glove factory GmbH GF. cosmetic gloves GF. color gloves

  • VINCENTmobile App TRAINING | Vincent Systems

    Close Up VINCENTmobile App TRAINING The grasping scheme is illustrated here. Additionally, the grasp the prosthesis is currently in as well as an animation of how the prosthesis fingers are supposed to move is displayed here. Here you can train the numerous grasps of the VINCENT hand prostheses. Up

  • Technical area | Vincent Systems

    Technical area Certification course Declaration of conformity - MDR Technical support for orthopedic technicians: +49 721 47 00 44 44 Service hours: Mon - Thurs: 9am - 12pm and 1pm - 5pm, Fri: 9am - 12pm and 1pm - 3pm (CET) Area for registered partners

  • Fluidhand5 | Vincent Systems

    2002 - Fluidhand 5 Up The Fluidhand 5 was designed with the aim of integrating all system components of miniature hydraulics into the metacarpals in order to make the hand compatible with established socket systems. The prosthesis can be connected to all standard prosthetic sockets via a quicksnap wrist. Both the myoelectric sensors and the energy storage of the socket are used. The pump, fluid tank, valve bank and controller are located in and on the metacarpus. With the reduction in tank size, the number of fluidic drive was reduced to 8. The ring finger and little finger are flexed over one drive each. In the weight-optimized frame in sandwich construction, the elastic finger abduction was integrated. Five valves control the 8 drives of the hand, with the ring, little and middle fingers being hydraulically connected to each other. Each of the 8 bellows-like drives is covered with a fabric that ensures the dimensional stability of the elastic inner chambers when a fluid is pumped into the cavity at a pressure of up to 6bar. The central chambers are fixed at the joint pivot point by loadable cords, thus the expansion of the bellows is redirected into a 90 degree rotational movement of the finger joint. The resetting of a joint is achieved by negative pressure in the bellows drive when the drive chambers are emptied; an elastic band supports the stretching of the joints. For storing the drive medium, usually water, Fluidhand 5 experimented with both foil membrane tanks and pressure storage tanks consisting of an elastic hose tank and a stable housing. Up

  • neo1 Exoskeleton | Vincent Systems

    neo1 - World's first under-clothing myoelectric exoskeleton for the upper extremity With neo1, Vincent Systems presents the breakthrough myoelectric exoskeleton designed specifically for users with limited upper extremity functionality, especially to compensate for paralysis caused by stroke and plexus injuries. This innovative technology uses advanced myoelectric control in conjunction with powerful micromotors in the elbow and hand areas to help users with their mobility and independence challenges due to their limitations. The myoelectric exoskeleton uses state-of-the-art sensor technology that detects and interprets the electrical signals generated by the user's muscles. By analyzing these signals, the exoskeleton intuitively responds to the user's movement intentions and allows them to regain control over their affected limbs. One of the most important features of this exoskeleton is its lightweight and ergonomic design. It is the world's first actively controlled exoskeleton that can be worn under the user's clothing due to its slim shape that is adapted to the body. This feature opens up a whole new horizon of applications as the system can be inconspicuously integrated into everyday life. Vincent Systems emphasizes comfort and adaptability, allowing users to wear the device for extended periods of time. The exoskeleton is customized to fit each user's anatomy. The control system is also user-specific, optimally adjusted for each wearer through a variety of parameters depending on the severity of the paralysis and the available muscle signals. In addition, the myoelectric exoskeleton offers different levels of support, allowing the user to gradually increase muscle activation and improve strength and control over time. This progressive approach promotes neuroplasticity and thereby also supports active rehabilitation. In the long term, positive effects are expected with regard to the reduction of phantom limb pain as well as a preventive effect with regard to the avoidance of overuse symptoms. neo1 we love perfection

  • Products | Vincent Systems

    Our products neo1 Exoskeleton VINCENTvr Training system VINCENTevolution5 VINCENTyoung3+ VINCENTpartial4 VINCENTpartial passive VINCENTpower flex USB-C VINCENTwrist VINCENTwork Accessories Software Cosmetic gloves

  • REHAB 2023 | Vincent Systems

    REHAB 2023 Close neo1 Exoskeleton VINCENTvr Training system

  • Software | Vincent Systems

    Software VINCENTmobile The VINCENTmobile app comes standard on a tablet with every myoelectric hand prosthesis. It can be used to make user-specific settings as well as to train the numerous grips of the VINCENT hand prostheses.

  • VINCENT Symposium 2023 | Vincent Systems

    VINCENT Symposium 2023 Close

  • Patents | Vincent Systems

    Patents All our products are registered and protected by the following United States patents: US8491666: VINCENTevolution1, VINCENTevolution3, VINCENTevolution3+, VINCENTevolution4, VINCENTevolution5, VINCENTpartial3, VINCENTpartial3+, VINCENTpartial4, VINCENTyoung3, VINCENTyoung3+ US9072616: VINCENTevolution2, VINCENTpartial2, VINCENTyoung2 US11517454 and by the following German and European patents: DE102014011554, DE102017005765, DE102016014090, DE102017010840, DE102017007794, DE102008056520, DE202014003565, DE202017000172, DE102017005761, DE102017005762, DE102017005764, DE102012005041, EP2364129 and others.

  • Predecessor models | Vincent Systems

    Predecessor models Our previous models are no longer available. Of course, maintenance and repair will still be done in consultation with your technician. VINCENTevolution1 VINCENTevolution2 VINCENTevolution3/3+ VINCENTevolution4 VINCENTyoung1 VINCENTyoung2 VINCENTpartial1 VINCENTpartial2 VINCENTpartial3 / 3+ Current products

  • VINCENTmobile App HOME | Vincent Systems

    Close Erfahrungsbericht - AKTUALISIEREN Von Isabelle Hi, ich bin Isabelle, trage eine myoelektrische Oberarmprothese und bin seit 2020 stolze Besitzerin meiner VINCENTevolution3. Ich muss schon sagen, als ich das allererste Mal alleine mit der Hand im Alltag dastand, war ich dezent überfordert. Die Steuerung der Hand erfordert Umdenken: Kein intuitives Zugreifen mehr, sondern aktive Anspannung meiner Bizeps- und Trizeps-Muskelsignale. Das ist für den Ungeübten anstrengend, sowohl für die Muskeln als auch fürs Gehirn. 16 verschiedene Griffe können mit diesen zwei Muskelsignalen anhand eines Griffschemas angesteuert werden. Da stand ich also und versuchte mir auszumalen, welcher Griff am ehesten dazu geeignet war, diese Teebeutel-Verpackung zu öffnen. Anschließend strengte ich krampfhaft meine grauen Zellen an, um mir das Griffschema in Erinnerung zu rufen, damit ich weiß, in welcher Kombination ich meine Muskeln anspannen muss, um in diesen Griff zu gelangen. Und dann erst konnte ich die Aktion starten. Anfangs musste ich in Kauf nehmen, dass Alltagsaktivitäten deutlich mehr Zeit in Anspruch nehmen, als wenn ich sie einfach mit einer Hand erledigen würde. Ich musste Geduld, Willensstärke und Nachsichtigkeit mir selbst gegenüber zeigen und stets hochkonzentriert und vorsichtig die Steuerung der Prothese etablieren. Doch ich wollte unbedingt, dass diese coole Hand mit all ihren Funktionen ein Teil von mir wird. So habe ich konsequent und überall im Alltag mit ihr geübt, wo es möglich war. Übung macht den Meister und das Gehirn ist durchaus in der Lage, umzulernen. Durch meinen Einsatz habe ich schnell Fortschritte gemerkt: Die Steuerung funktioniert schneller und flüssiger, Erfolgserlebnisse nehmen zu, ich werde geschickter im Umgang mit der Prothese. Tassen zerschellen nicht mehr auf dem Boden, Flaschen werden nicht mehr mit voller Kraft zusammengedrückt und ich muss nicht mehr zusätzliche Zeit für Alltagsaktivitäten einplanen. Die Ansteuerung der Griffe funktioniert automatisch, das Griffschema hat sich eingeprägt. Mittlerweile ist die Prothese ein Teil von mir geworden, den ich nicht mehr missen möchte. Nun wäre ich aufgeschmissen, wenn ich das Leben nur noch mit einem Arm beschreiten würde. In so vielen Alltagssituationen hilft mir die Prothese: Beim Schuhe Zubinden, beim Verpackungen Öffnen oder aber beim Öffnen meiner Wohnungstür, diese muss man nämlich mit einer Hand heranziehen, während man den Schlüssel im Schloss dreht. Ich habe die Vincent-Hand mit all ihren Vorteilen zu schätzen gelernt. Präzision und Feinmotorik der Hand sind unglaublich, mit dem Pinzettengriff kann ich sogar die kleinen Laschen von Joghurtbechern greifen und aufreißen. Anhand von Vibrationsfeedback beim Zugreifen konnte ich außerdem mit der Zeit eine Art Tastsinn etablieren. Ich kann mittlerweile genau einschätzen, wie fest ich mit der Hand zugreife und wann die aufgewendete Kraft ausreichend ist und wann nicht. Die Prothese hat mir Selbstständigkeit, Akzeptanz, Normalität im Alltag und ein Gefühl von Vollständigkeit gegeben. Sie ist mir kein Fremdkörper mehr, die Prothese ist jetzt mein Arm.

bottom of page