top of page

Search results

74 items found for ""

  • Fluidhand8 | Vincent Systems

    2005 - Fluidhand 8 Up The Fluidhand 8 has 8 drives that are controlled via 5 valves. The bellows in the index finger and middle finger are each hydraulically coupled with each other, and the drives of the ring and little fingers are also connected with each other via a common valve. The special feature of this further development is that the metacarpus has been replaced by a hermetically sealed pressure body. Inside the metacarpus is an elastic tank in the form of a diaphragm, in which both the drive medium (vegetable oil) and the control electronics, valves and pump are integrated; all system components "float" permanently in the drive medium. Between the pressure body shell and the diaphragm there is again a two-phase gas with a constant pressure of 2 bar. The integrated design allows any space reserves in the metacarpus to be used as a fluid reservoir, while at the same time forming a maximum gas volume for preloading the hydraulic tank. The pump can draw directly from the environment and the pump, valves and electronics are optimally cooled by the surrounding liquid. The design makes the hand very compact and at the same time extremely stable. Due to the very flat metacarpus of 30 mm and the short design, the hand achieves an anatomical shape and with only 410 g it is particularly light. The Quicksnap wrist closure makes the prosthesis compatible with all stem systems and their power supply. The prosthesis is controlled by two EMG electrodes integrated in the prosthesis socket. Simple trigger switching signals can be used to switch between pre-programmed grips and the grips can then be controlled proportionally. For the first time, a sense of touch has also been integrated into the prosthesis. The grasping force measured on the index finger via a sensor is transmitted to the system controller, which activates a vibration motor on the hand that transmits coded information to the prosthesis wearer about the force applied. In addition, the Fluidhand 8 serves as a test platform for new prosthesis controls such as grip pattern recognition or motion control using 3D sensors, research areas on which the research center has been working intensively as part of the Fluidhand development. Up

  • Fluidhand5 | Vincent Systems

    2002 - Fluidhand 5 Up The Fluidhand 5 was designed with the aim of integrating all system components of miniature hydraulics into the metacarpals in order to make the hand compatible with established socket systems. The prosthesis can be connected to all standard prosthetic sockets via a quicksnap wrist. Both the myoelectric sensors and the energy storage of the socket are used. The pump, fluid tank, valve bank and controller are located in and on the metacarpus. With the reduction in tank size, the number of fluidic drive was reduced to 8. The ring finger and little finger are flexed over one drive each. In the weight-optimized frame in sandwich construction, the elastic finger abduction was integrated. Five valves control the 8 drives of the hand, with the ring, little and middle fingers being hydraulically connected to each other. Each of the 8 bellows-like drives is covered with a fabric that ensures the dimensional stability of the elastic inner chambers when a fluid is pumped into the cavity at a pressure of up to 6bar. The central chambers are fixed at the joint pivot point by loadable cords, thus the expansion of the bellows is redirected into a 90 degree rotational movement of the finger joint. The resetting of a joint is achieved by negative pressure in the bellows drive when the drive chambers are emptied; an elastic band supports the stretching of the joints. For storing the drive medium, usually water, Fluidhand 5 experimented with both foil membrane tanks and pressure storage tanks consisting of an elastic hose tank and a stable housing. Up

  • LVampNRW 10th anniversary | Vincent Systems

    LVampNRW 10th anniversary Close

  • Technical area | Vincent Systems

    Technical area Certification course Declaration of conformity - MDR Technical support for orthopedic technicians: +49 721 47 00 44 44 Service hours: Mon - Thurs: 9am - 12pm and 1pm - 5pm, Fri: 9am - 12pm and 1pm - 3pm (CET) Area for registered partners

  • Software | Vincent Systems

    Software VINCENTmobile The VINCENTmobile app comes standard on a tablet with every myoelectric hand prosthesis. It can be used to make user-specific settings as well as to train the numerous grips of the VINCENT hand prostheses.

  • VINCENTpartial_body | Vincent Systems

    VINCENTpartial_body The passive partial hand system enables prosthetic reconstruction of a partial hand. It consists of functional passive finger and thumb prostheses that can be locked in place in one or two joints in different angular positions. The weight-optimized stainless steel joints with variable-length finger or thumb attachments are very robust and water-resistant. The variable-length finger or thumb sleeves are made of durable and stain-resistant HTV silicone. The fingers are mounted directly to the stem with two screws coming from the stem or are aligned and fixed in position via various frame types made of stainless steel sheet and aluminum adapters. The fingers can be equipped with one or two successive ratchet joints. The joints function in such a way that pulling in the distal finger direction releases the locking of the joint - positioning is now possible. Releasing the finger causes the joint to lock into the desired position. In addition to the distal locking joint, the thumb has a proximal basic joint for lateral pivoting. The basic joint can be pivoted by 110° via friction locking, and the force required for this can be adjusted. The thumb is aligned and fixed in place by means of a frame plate and a threaded base plate, which can also be laminated directly into the stem. All in all, VINCENTpartial passive is an easy-to-use, robust and functional passive finger and thumb system. Flyer VINCENTpartial_body

  • VINCENT Symposium 2023 | Vincent Systems

    VINCENT Symposium 2023 Close

  • VINCENTwork | Vincent Systems

    VINCENTwork The VINCENTwork prosthesis system is an orthopedic aid for everyday work but also for competitive athletes. In particular, training with heavy weights is an important training discipline in numerous sports. Previous fittings in the field of prosthetics were not designed for the high loads involved in competitive sports. The new prosthesis series makes it possible to train with weights of up to 200 kg. Snatching and alternating loads are also permitted without any problems at the maximum weights. A special feature is the flexible wrist. This allows a movement compensation between the training weight and the forearm stem. The joint flexes in all directions in a damped manner and also allows unlimited rotation compensation. Shocks and tensile forces are elastically absorbed and damped. The concept allows improved, symmetrical training with both arms and thus supports a natural movement pattern. This not only makes training more efficient, but also less stressful for the joints and the entire musculoskeletal system. Equipped with a shock-absorbing, rotating and angle-compensating wrist, the sports prosthesis enables safe training without limits. Flyer VINCENTwork

  • VINCENTwrist | Vincent Systems

    VINCENTwrist Wrist joints for adults and children | Standard, extra short, adjustable flexion | Low weight | Short length quicksnap | quicksnap+flexion | short | short+flexion VINCENTwrist quicksnap The standard wrist joint makes it possible to quickly and easily attach and remove the hand prosthesis. The joint offers compatibility with other systems such as DynamicArm or Boston Digital Arm™. VINCENTwrist short Our transcarpal joint convinces with its uniquely low mounting depth and is therefore also suitable for long arm stumps. In addition to the prosthesis-side joint, the shaft-side casting ring (24.7 g / 0.05 lb) is also particularly light. The standard wrist and the transcarpal joint can be rotated noiselessly and gridlessly. The force required for rotation can be individually adjusted for each user. Both wrists can be combined with the joint VINCENTwrist flexion that can be angled. VINCENTwrist flexion The joint has a large range of movement and allows for flexion from -36° to +36°. lt is particularly suitable for bilateral users due to its switchless operation. The position is changed by pulling, moving and releasing. Our four wrist options are characterized by their low mounting depths. Due to the intelligent multi-material-mix, the wrists are particularly light and at the same time very robust and corrosion resistant. Flyer VINCENTwrist Technical specifications VINCENTwrist quicksnap | quicksnap+flexion short | short+flexion we love perfection

  • VINCENTpartial3+ active | Vincent Systems

    VINCENTpartial3+ Waterproof to IP67 | Modular design | Individually customizable | Single Finger Control Light and compact | Numerous grip types, selectable at any time | Available in titanium The VINCENTpartial3+ is the third generation of our prosthesis series for partial hand fittings with motor-driven single fingers and thumbs. The VINCENTpartial3+ is the waterproof design variant of the VINCENTpartial3. Hand washing under running water is possible without any problems, provided that the design of the prosthesis shaft also permits this. The prosthesis can be adapted to different fitting situations thanks to our modular system. The fingers, thumb, control unit and batteries can be placed individually to accommodate an anatomical reconstruction of the hand, as far as technically possible. The fingers and thumb are attached to the prosthesis stem via a steel frame concept. This determines the hand width as well as the position and orientation of the fingers. Control can be done via EMG sensors using muscle tension or via tactile FSR sensors. Grasp selection and proportional control of the fingers follow our standardized control concept. Numerous different grips can be achieved by timed opening and closing signals as long as four long fingers and a thumb are used. If fewer electrically operated fingers are used, the grasp types are reduced accordingly. Alternatively the Single Finger Control (SFC) method can be used to control as many as 5 fingers individually by up to 5 input sensors. This makes a more intuitive and faster usage of the prosthesis possible. The fingers and thumb are made of a high-strength aluminum alloy. We also offer a special version in titanium. For a secure grasp, all components have a rubber coating. As with all our models, the index finger tip is touchscreen-compatible. The particularly powerful, compact, and at the same time robust design of our partial hand prosthesis is unique and sets us apart from all other solutions. This makes the prosthesis particularly suitable for everyday use. High quality and outstanding design go without saying. Flyer VINCENTpartial3+ Technical specifications Photo gallery VINCENTpartial3+ we love perfection

  • VINCENTyoung3+ | Vincent Systems

    VINCENTyoung3+ Waterproof to IP67 | Modern look | Anatomical design | High grip strength | Compact, lightweight, robust Various wrist types | Numerous grip types, selectable at any time | Easy to use | Available in four colors With VINCENTyoung3+, we are introducing the third generation of the world's unique multi-articulating hand prosthesis for children and young adults. Depending on the child’s individual development, use from the age of 8 is recommended. But even with adolescents, the anatomically shaped, particularly light hand can be the first choice. For young adults who have somewhat larger hands, the VINCENTevolution5 (size XS) can also be considered. Thanks to its lightweight construction, the prosthesis scores with its low weight (approx. 350 g ) and robustness, which is extremely important for active everyday activities. The VINCENTyoung3+ is waterproof to IP67. Hand washing under running water is possible without any problems, provided that the design of the prosthesis shaft also permits this. In terms of finger strength, speed and an opening width of 80 mm, the functionality extends to that of the larger models. Three of the four motors in the hand move the long fingers independently of each other in the base joint, with the ring and little fingers moving together. The long fingers are designed to be immobile in the middle and end phalanx. From the middle joint onwards, a spring element extends to the fingertip, which supports an adaptive grip when holding objects. The thumb is moved by the fourth motor independently of the fingers. The base of the thumb can be pivoted passively and laterally via a 90° joint. An easy and quick-to-learn control system allows the user to select from 13 different grips using muscle signals. The specially tailored training app and learning games support children and young people in getting to know the control system, making the hand easy to operate after a short time. The VINCENTyoung3+ is available in four color options: powder blue, black, blackberry and natural. As with the VINCENTevolution4, the VINCENTyoung3+ also offers a choice of four wrist variants. The hand can be worn with a textile cosmetic glove from GF. glove factory UG . However, it is usually used without a glove, because: It “just looks cool”. Flyer VINCENTyoung3 Technical specifications Flyer VINCENTwrist Size and weight chart Grasps VINCENTyoung3+ Textile Gloves & Accessories VINCENTyoung3+ we love perfection

  • Company | Vincent Systems

    Vincent Systems is a young, dynamic, internationally oriented company from Karlsruhe with customers in Europe, Asia and North America. Vincent Systems GmbH was founded in May 2009 by CEO Dr Stefan Schulz.

  • Contact | Vincent Systems

    Contact Vincent Systems GmbH Albert-Nestler-Str. 28-30 76131 Karlsruhe Germany General requests and support: Phone: +49 721 480 714 0 Fax: +49 721 480 714 99 E-Mail: service@vincentsystems.de Technical support for orthopedic technicians: Phone: +49 721 47 00 4444 Service hours: Mon - Thurs : 9am - 12 pm and 1pm - 4:30pm (CET) Fri: 9a m - 12pm and 1pm - 3p m (CET) Orders: E-Mail: sales@vincen tsystems.de Fax: +49 721 480 714 99 Imprint Information duty according to § 5 TMG. Vincent Systems GmbH CEO: Dr. Stefan Schulz Albert-Nestler-Str. 28-30 76131 Karlsruhe Germany Phone: +49 721 480 714 0 Fax: +49 721 480 714 99 E-Mail: service @vincentsystems.de Register court: AG Mannheim Register number: HRB 706896 VAT ID: DE 265276770

  • neo1 Exoskeleton | Vincent Systems

    neo1 - World's first under-clothing myoelectric exoskeleton for the upper extremity With neo1, Vincent Systems presents the breakthrough myoelectric exoskeleton designed specifically for users with limited upper extremity functionality, especially to compensate for paralysis caused by stroke and plexus injuries. This innovative technology uses advanced myoelectric control in conjunction with powerful micromotors in the elbow and hand areas to help users with their mobility and independence challenges due to their limitations. The myoelectric exoskeleton uses state-of-the-art sensor technology that detects and interprets the electrical signals generated by the user's muscles. By analyzing these signals, the exoskeleton intuitively responds to the user's movement intentions and allows them to regain control over their affected limbs. One of the most important features of this exoskeleton is its lightweight and ergonomic design. It is the world's first actively controlled exoskeleton that can be worn under the user's clothing due to its slim shape that is adapted to the body. This feature opens up a whole new horizon of applications as the system can be inconspicuously integrated into everyday life. Vincent Systems emphasizes comfort and adaptability, allowing users to wear the device for extended periods of time. The exoskeleton is customized to fit each user's anatomy. The control system is also user-specific, optimally adjusted for each wearer through a variety of parameters depending on the severity of the paralysis and the available muscle signals. In addition, the myoelectric exoskeleton offers different levels of support, allowing the user to gradually increase muscle activation and improve strength and control over time. This progressive approach promotes neuroplasticity and thereby also supports active rehabilitation. In the long term, positive effects are expected with regard to the reduction of phantom limb pain as well as a preventive effect with regard to the avoidance of overuse symptoms. neo1 we love perfection

  • VINCENTmobile App HOME | Vincent Systems

    Close Erfahrungsbericht - AKTUALISIEREN Von Isabelle Hi, ich bin Isabelle, trage eine myoelektrische Oberarmprothese und bin seit 2020 stolze Besitzerin meiner VINCENTevolution3. Ich muss schon sagen, als ich das allererste Mal alleine mit der Hand im Alltag dastand, war ich dezent überfordert. Die Steuerung der Hand erfordert Umdenken: Kein intuitives Zugreifen mehr, sondern aktive Anspannung meiner Bizeps- und Trizeps-Muskelsignale. Das ist für den Ungeübten anstrengend, sowohl für die Muskeln als auch fürs Gehirn. 16 verschiedene Griffe können mit diesen zwei Muskelsignalen anhand eines Griffschemas angesteuert werden. Da stand ich also und versuchte mir auszumalen, welcher Griff am ehesten dazu geeignet war, diese Teebeutel-Verpackung zu öffnen. Anschließend strengte ich krampfhaft meine grauen Zellen an, um mir das Griffschema in Erinnerung zu rufen, damit ich weiß, in welcher Kombination ich meine Muskeln anspannen muss, um in diesen Griff zu gelangen. Und dann erst konnte ich die Aktion starten. Anfangs musste ich in Kauf nehmen, dass Alltagsaktivitäten deutlich mehr Zeit in Anspruch nehmen, als wenn ich sie einfach mit einer Hand erledigen würde. Ich musste Geduld, Willensstärke und Nachsichtigkeit mir selbst gegenüber zeigen und stets hochkonzentriert und vorsichtig die Steuerung der Prothese etablieren. Doch ich wollte unbedingt, dass diese coole Hand mit all ihren Funktionen ein Teil von mir wird. So habe ich konsequent und überall im Alltag mit ihr geübt, wo es möglich war. Übung macht den Meister und das Gehirn ist durchaus in der Lage, umzulernen. Durch meinen Einsatz habe ich schnell Fortschritte gemerkt: Die Steuerung funktioniert schneller und flüssiger, Erfolgserlebnisse nehmen zu, ich werde geschickter im Umgang mit der Prothese. Tassen zerschellen nicht mehr auf dem Boden, Flaschen werden nicht mehr mit voller Kraft zusammengedrückt und ich muss nicht mehr zusätzliche Zeit für Alltagsaktivitäten einplanen. Die Ansteuerung der Griffe funktioniert automatisch, das Griffschema hat sich eingeprägt. Mittlerweile ist die Prothese ein Teil von mir geworden, den ich nicht mehr missen möchte. Nun wäre ich aufgeschmissen, wenn ich das Leben nur noch mit einem Arm beschreiten würde. In so vielen Alltagssituationen hilft mir die Prothese: Beim Schuhe Zubinden, beim Verpackungen Öffnen oder aber beim Öffnen meiner Wohnungstür, diese muss man nämlich mit einer Hand heranziehen, während man den Schlüssel im Schloss dreht. Ich habe die Vincent-Hand mit all ihren Vorteilen zu schätzen gelernt. Präzision und Feinmotorik der Hand sind unglaublich, mit dem Pinzettengriff kann ich sogar die kleinen Laschen von Joghurtbechern greifen und aufreißen. Anhand von Vibrationsfeedback beim Zugreifen konnte ich außerdem mit der Zeit eine Art Tastsinn etablieren. Ich kann mittlerweile genau einschätzen, wie fest ich mit der Hand zugreife und wann die aufgewendete Kraft ausreichend ist und wann nicht. Die Prothese hat mir Selbstständigkeit, Akzeptanz, Normalität im Alltag und ein Gefühl von Vollständigkeit gegeben. Sie ist mir kein Fremdkörper mehr, die Prothese ist jetzt mein Arm.

  • VINCENTpartial passive | Vincent Systems

    VINCENTpartial passive The passive partial hand system enables prosthetic reconstruction of a partial hand. It consists of functional passive finger and thumb prostheses that can be locked in place in one or two joints in different angular positions. The weight-optimized stainless steel joints with variable-length finger or thumb attachments are very robust and water-resistant. The variable-length finger or thumb sleeves are made of durable and stain-resistant HTV silicone. The fingers are mounted directly to the stem with two screws coming from the stem or are aligned and fixed in position via various frame types made of stainless steel sheet and aluminum adapters. The fingers can be equipped with one or two successive ratchet joints. The joints function in such a way that pulling in the distal finger direction releases the locking of the joint - positioning is now possible. Releasing the finger causes the joint to lock into the desired position. In addition to the distal locking joint, the thumb has a proximal basic joint for lateral pivoting. The basic joint can be pivoted by 110° via friction locking, and the force required for this can be adjusted. The thumb is aligned and fixed in place by means of a frame plate and a threaded base plate, which can also be laminated directly into the stem. All in all, VINCENTpartial passive is an easy-to-use, robust and functional passive finger and thumb system. Flyer VINCENTpartial passive Mounting instructions finger Mounting instructions thumb

  • VINCENTmobile App HOME | Vincent Systems

    Close VINCENTmobile App HOME - Prosthesis : all technical information on the prosthesis, battery status, and user statistics with the number of in-use grasps can be found here. - About: all technical information about the app can be found here. SENSORS - Display of the individual sensor signals. - Sensor settings. Up

bottom of page